Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 11(10): 2627-2639, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32206266

RESUMO

There is a dire need for new antimicrobial compounds to combat the growing threat of widespread antibiotic resistance. With a currently very scarce drug pipeline, consisting mostly of derivatives of known antibiotics, new classes of antibiotics are urgently required. Metal complexes are currently in clinical development for the treatment of cancer, malaria and neurodegenerative diseases. However, only little attention has been paid to their application as potential antimicrobial compounds. We report the evaluation of 906 metal-containing compounds that have been screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD) for antimicrobial activity. Metal-bearing compounds display a significantly higher hit-rate (9.9%) when compared to the purely organic molecules (0.87%) in the CO-ADD database. Out of 906 compounds, 88 show activity against at least one of the tested strains, including fungi, while not displaying any cytotoxicity against mammalian cell lines or haemolytic properties. Herein, we highlight the structures of the 30 compounds with activity against Gram-positive and/or Gram-negative bacteria containing Mn, Co, Zn, Ru, Ag, Eu, Ir and Pt, with activities down to the nanomolar range against methicillin resistant S. aureus (MRSA). 23 of these complexes have not been reported for their antimicrobial properties before. This work reveals the vast diversity that metal-containing compounds can bring to antimicrobial research. It is important to raise awareness of these types of compounds for the design of truly novel antibiotics with potential for combatting antimicrobial resistance.

3.
Nat Methods ; 13(12): 997-1000, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27749839

RESUMO

We present a baculovirus-based protein engineering method that enables site-specific introduction of unique functionalities in a eukaryotic protein complex recombinantly produced in insect cells. We demonstrate the versatility of this efficient and robust protein production platform, 'MultiBacTAG', (i) for the fluorescent labeling of target proteins and biologics using click chemistries, (ii) for glycoengineering of antibodies, and (iii) for structure-function studies of novel eukaryotic complexes using single-molecule Förster resonance energy transfer as well as site-specific crosslinking strategies.


Assuntos
Proteínas de Fluorescência Verde/biossíntese , Complexos Multiproteicos/biossíntese , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Proteínas Virais/biossíntese , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Técnicas de Cultura de Células , Transferência Ressonante de Energia de Fluorescência/métodos , Código Genético , Vetores Genéticos , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Plasmídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Células Sf9 , Spodoptera , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...